Idempotent Functional Analysis : an Algebraical Approach
نویسندگان
چکیده
In this paper we consider Idempotent Functional Analysis, an 'abstract' version of Idempotent Analysis developed by V. P. Maslov and his collaborators. We give a review of the basic ideas of Idempotent Analysis. The correspondence between concepts and theorems of the traditional Functional Analysis and its idempotent version is discussed; this correspondence is similar to N. Bohr's correspondence principle in quantum theory. We present an algebraical approach to Idempotent Functional Analysis. Basic notions and results are formulated in algebraical terms; the essential point is that the operation of idempotent addition can be defined for arbitrary infinite sets of summands. We study idempotent analogs of the main theorems of linear functional analysis and results concerning the general form of a linear functional and scalar products in idempotent spaces.
منابع مشابه
Idempotent functional analysis: An algebraic approach
This paper is devoted to Idempotent Functional Analysis, which is an “abstract” version of Idempotent Analysis developed by V. P. Maslov and his collaborators. We give a brief survey of the basic ideas of Idempotent Analysis. The correspondence between concepts and theorems of the traditional Functional Analysis and its idempotent version is discussed in the spirit of N. Bohr’s correspondence p...
متن کاملTensor Products of Idempotent Semimodules. an Algebraic Approach
We study idempotent analogs of topological tensor products in the sense of A. Grothendieck. The basic concepts and results are simulated on the algebraic level. This is one of a series of papers on idempotent functional analysis.
متن کاملNuclear Semimodules and Kernel Theorems in Idempotent Analysis. an Algebraic Approach
In this note we describe conditions under which, in idempotent functional analysis (see [1–3]), linear operators have integral representations in terms of idempotent integral of V. P. Maslov. We define the notion of nuclear idempotent semimodule and describe idempotent analogs of the classical kernel theorems of L. Schwartz and A. Grothendieck (see, e.g., [4–6]). In [11], for the idempotent sem...
متن کاملLinear Functionals on Idempotent Spaces : An Algebraic Approach
In this paper, we present an algebraic approach to idempotent functional analysis, which is an abstract version of idempotent analysis in the sense of [1–3]. Elements of such an approach were used, for example, in [1, 4]. The basic concepts and results are expressed in purely algebraic terms. We consider idempotent versions of certain basic results of linear functional analysis , including the ...
متن کاملWavelet Approach to Polynomialdynamicsa
We give the explicit time description of the following problems: dynamics and optimal dynamics for nonlinear (polynomial) dynamical systems, Galerkin approximations for some class of partial diierential equations and routes to chaos in Melnikov function approach to the perturbations of Hamiltonian systems. The rst three problems and a part of the fourth one are reduced to the problem of the sol...
متن کامل